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1. Introduction o
Suppose (Xk, k eZ) is a strictly stationary sequence of random variables __.
on a probability space (Q,F,P). For -= <Jd <l <= et Fs denote the o-field ?%!
of events generated by (xk, J <k f.L). For the sequence (Xk) the "past" and '
"future" tail o-fields are respectively :]F:: and :]F:, and the "double"
. n= n=

3 tail o-field is n (F'z v F:). The sequence (Xk) is said to be "bilaterally
. n=1 ~

deterministic" if each of the r.v.'s Xk is measurable with respect to the
double tail o-field.

Several authors have discussed examples of strictly stationary sequences
(Xk) which have a non-trivial double tail o-field - or are even bilaterally
deterministic - such that the past and future tail o-fields are each trivial.
Olshen [5] gives an example with the X&s in essence being real-valued. In
Gurevi¢ [2] and in Ornstein and Weiss [6], classes of finite-state examples
are constructed, some of these examples being isomorphic to a Bernoulli shift.
Also [6] refers to similar work of Furstenberq. Here we shall examine the
question of what strong mixing conditions can be satisfied by bilateralily
deterministic stationary sequences of real-valued r.v.'s. This work arose from
a question posed to the author by H. Berbee as to whether the (Rosenblatt)
stronqg mixing condition implied a trivial double tail o-field.

For any two o-fields A and B define the "maximal correlation":
n(A,B) := sup |Corr (f,q)|
S fe ), a. 38)

(In the notation Lz(.) here, only real-valued random variables are included.)

! For a given strictly stationary sequence (Xk. k ¢ Z), define for eachn ¢ N,
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0 o . . - .
p(n) := O(F-w’Fn)° The sequence (Xk) is said to be “p-mixing" if o(n) -~ 0

as n > o, The following theorem will be proved:

Theorem 1: Suppose CysCosC3s-en is a sequence of positive numbers. Then
there exists a bilaterally deterministic strictly stationary sequence (Xk, keZZ)

of non-degenerate real-valued random variables such that ¥n ¢ N, p(n) < Cpe

In particular, a (non-degenerate) bilaterally deterministic strictly
stationary sequence (Xk) can be p-mixing with an arbitrarily fast rate of
convergence of p(n) to 0. Now p-mixing implies the (Rosenblatt) strong mixing
condition, which in turn implies that the past and future tail o-fields are each
trivial. (See e.g. [4, pp. 301-306, Def. 17.1.1, Theorem 17.1.1, and Def.
17.2.1].) Among the mixing conditions in the literature which fail to imply
a trivial double tail o-field, there does not seem to be any that is stronger
than p-mixing. The p-mixing condition plays a natural role in central limit
theory for dependent r.v.'s; see e.qg. Ibragimov [3].

Theorem 1 is proved in Section 3. In Section 2 some preliminary work is
done in preparation for that proof. Our construction in Sections 2 and 3 is
similar to (but more complicated than) Olshen's; his construction (see
[5, p. 155, Tines 5-10, and p. 156, 1ines 4-12]) contains some key ideas used

in our construction.
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2. Preliminaries

The following result of Csaki and Fischer [1, Theorem 6.2] will play

a key role later on:

Lemma 1 (Csaki and Fischer): Suppose An and Bn’ ne N, are o-fields,

and the o-fields An v Bn’ n ¢ N are independent. Then
p( v A, v B)=sup nplA,B).
n(m n HGN n n(_IN n n

For a proof see Witsenhausen [7, Theorem 1]. (In that context there
were only finitely many pairs of o-fields, but the extension to Lemma 1 is
elementary.)

Next, for any family Z of random variables let B(Z) denote the o-field

of events generated by Z.

Lemma 2: Suppose C5CpsCqs- - - is a sequence of positive numbers. Then

there exists a non-degenerate sequence (Yk, k eZ) of real-valued random

variables such that the following two statements hold:
(i) ¥n < N, ¥K e Z o(B(Y,, k < K), B(Y,, k > Kin)) < c.
(ii) VK Z, YK is measurable with respect to n (B(Yk, k <-n)v B(Yk, k>n)).

n=1

The sequence (Yk) that we shall construct for Lemma 2 will not be stationary,

but it will obviously have the other properties needed for Theorem 1. In
Section 3 the stationary sequence (Xk) for Theorem 1 will be constructed with

the aid of a countable family of independent copies of the sequence (Yk) here.

The rest of Section 2 is devoted to the proof of Lemma 2.
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Proof of Lemma 2: Without loss of generality we assume that

LMy

13c]3c2{c33...>0 (2.1)
For each n ¢ N define

o = Con (2.2) v

. e, - . N
PIRRFR. | NN

(The purpose of (2.2) will become clear later on.)

On some probability space, let (Vk m’ k eZ, me N) be an array of

random variables with the following three properties:

]
= 1) = 1/2. d

-n,m’vn,m) ’

e R

(2.3) For each (k,m),

P(Vk,m =-1) = P(vk,m

(2.4) The random variables V0 me M€ N and the random vectors (V

ne N, me N are all independent of each other.

(2.5) For eachnc N, me N, ic {-1,1}, j e {-1,1},

PV =7, vn,m =3J)=(0+ 1jrn)/4.

-n,m

Let h: N > N be a function such that for each £ ¢ N the following

two statements hold:

(2.6) There exist infinitely many odd integers m ¢ N such that h(m) = £.

(2.7) There exist infinitely many even integers m ¢ N such that h(m) = £. _ ~

]

For each £ ¢ N, J ¢ N, define the two sets S(£,J,0dd) and S(¢,J,even) as 5 A
follows: S(¢,J,0dd) (resp. S(£,J,even)) is the set of the least J positive !
odd (resp. even) integers m such that h(m) = £.
By (2.5) we have that for eachne¢ N, mc N, EV_n’mV"’m=rn; and by (2.4) and ﬁ

..............
--------
......................
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the strong law of large numbers, for eachne¢ N, £ ¢« N,

]imd*w(]/d)'zmeS(K,J,odd)v-n,mVn,m =r,a.s. and

1imd+m(1/J)-Z = r _ a.s. Deletina if necessary a nulli-set

mes(Z,J,even)V-n,mvn,m n
< from the probability space on which the array (Vk m) is defined, we assume that
for every sample point w in this probability space the following two statements

hold:

(2.8) For every k ¢ Z, m ¢ N, V, rn(w) e {-1,11,

(2.9) For every n ¢ N, £ ¢ N,

i

Limysco179)" dmnes(e,9,0dd) Von,m{®) VY m{w) = 1y and

{
-

Ume(]/J)' Xmes(l,\],even)v-n

’m(m)-vn’m(w) =
Let us digress for a moment to explain what will occur. Based on the

array (Vk m)’ another array (wk m) of {-1,1}-valued random variables will be

defined, and for each k ¢ Z the r.v. Yk in Lemma 2 will simply be a one-to-one

bimeasurable function of (wk,], wk,z wm,...). For eachne¢ N, £ ¢ IN, the

r.v. W_, p will be a function of the r.v.'s (w_n_,,m, Wosy,m: ™ o0dd, h(m) =¢£),

: m even, h(m)=¢). In the end

‘[-:..'_-‘_‘ and wn,( will be a function of (H-n-l,m’ Woel m

' this will easily imply property (ii) in Lemma 2, but it has to be set up so

The definition of the other random variables wk m will be recursive. For each

. that in the end property (i) of Lemma 2 wil1l also hole.

::»l'.f'_‘ Now Tet us define the array (W, _: kcZ, meN). First,
@

o
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LimJ»w(]/J)';'mcS(f,J,odd) N—n-],mwnﬂ,m )
= U (V) Insie,0,0dd) V-n-tam T tenin(m) Vet T
» - i . = .
: - ”-n,z LM g0, (1/9) XmeS(I,J,odd) V-n-l,m vn+1,m w-n,l M
f
t Hence W_ , is a measurable function of (W_ ;, W ;). The same is true for
T L s T e g S IR L

Ly

n > 0, once (wk m’ k <N, me N) is defined, define wn+ s, Mmec N as follows:

1,m

Voddme« N, W W

nt1,m 2= Won h(m) Vet ,m

(2.11)

Vevenme N, wn+]’m := wn,h(m). vn+1,m

This completes the recursive definition.

In order to make our notation more compact, let us define for each k ¢ Z
the random sequences Vk and wk by Vk = (Vk,], Vk,Z’ Vk’3,...) and
W

1= (W W

k k1 M2 Wiz )
By (2.8), (2.10), (2.11), and an induction argument, we have the
following two facts:

(2.12) For every k « Z, m ¢ N, the r.v. W takes its values in {-1,1}

k,m
(at every sample point in our probability space).
(2.13) For every n = 0,1,2,... the random sequences H_n and wn are

measurable functions of (V-n’ V—n+l""’ Vn).

Claim 1: For each n > 0 the random sequences W__ and W are each a

measurable function of (w_n_1, wn+]).

Proof of Claim 1: Let n > 0 and £ ¢« N be arbitrary but fixed. Then at

every sample point in our probability space, by (2.10), (2.11), the definition

of S(¢,J,0dd), and (2.9),

Kedi

.
L) S e Ve . - -’ - v.. rarlr.
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wn ¢ by a similar arqument using S({,J,even). Claim 1 follows.

By Claim 1 and an induction argument we have the following:

Claim 2: For each K « Z, the random sequence W, is measurable with

K
respect to n (B(Nk, k < -n) v B(Nk, k >n)).
n=1 - -
‘ » » 3 K]
This will give us (ii) of Lemma 2 later on. Now we have to do some work
to prepare for (i) of Lemma 2.
Claim 3: Supposen « N, me¢ N, and Z is a random variable independent
2
- of (V_n m’ Vn m) and taking its values in {-1,1}. Then the following two
.- b ’
L statements hold:
T![ (i) The joint distribution of (Z'V_n m’ Z-Vn m) is the same as that of
(V-n,m’ vn,m)'
14 . . = v =
(1) p(B(Z-V_ o)y B(Z-V 1)) = p(BLV_ | ), BV, 3) = r.
. Proof of Claim 3: Part (i) follows from (2.5) and an elemesntary calcula-

tion. The first equality in (ii) follows from (i); we cnly need to verify the
second equality in (ii).

Suppose f (resp. g) is a non-degenerate function of V-n - (resp. Vn m).

Since V_n m takes only two values (-1 and +1), it is easy to see that f is

automatically an affine function of V_n m* Similarly q is an affine function

of V Hence |Corr (f,g)| = |Corr (V

n.m’ v )| = rn by (2.5) and a

-n,m* ‘n,m
simple calculation. The second equation in (ii) follows, and Claim 3 is

proved.

Claim 4: Suppose n > 0, and 21,22,23,... are B(Nk, -n < k < n)-measurable
random variables taking their values in {-1,1}. Then the o-fields

BWe» =n < k< n)and B(ZyV 4 50 2y "Vogg g)s 9= 1,2,3,... are all




independent of each other.

Proof of Claim 4: Let J > 1 be arbitrary but fixed. Define the o-field

J-1
A := B(wk, -n < k <n) v ( h!] B(Zh°v-n-1,h’ Zh'vn+1,h))' (In the case J=1

define A := B(wk, -n < k < n).) To prove Claim 4 it suffices to prove that

the random vector (ZJ'V-n-],J’ b4 .Vn+],J) is independent of A.

J
Let A ¢ A be an arbitrary fixed event such that P(A) > 0. Let i,j each

be an arbitrary fixed element of {-1,1}. It suffices to prove that

. = 3 . = 'A =

: , (2.14)
= P23V 07 1 Ly Ve, = 3)

By (2.13) the random sequences N_n, W ces Nn are (measurable)

-n+1*"

functions of V-n’ v "Vn' Consequently A is an element of, and ZJ is

n+1c

measurable with respect to, the o-field

RVs -n<ken) v BV | 1 Vg i 1<h<d=1)5 and (V-n-l,J’Vn+1,J) is independent

this o-field by (2.4). Consequently, for each z¢{-1,1} such that P(An{ZJ=z}) >
one has that

P(Z,-V

0 Von-1,0 =i, Z,°V

3 Ve, T3 AN A2y = 2h) =

=POV_ .9 = 172, Vg g = 372 1R {25 = 2))

=PV g0 T T2 Vg g = 3/2)

o2y .
(1 +r q13/27) = (0 + v 17)

H

P(ZJ‘V_n_]’J = i, ZJ.Vn+],J = j).

(We are using (2.5) and Claim 3(i).) Equation (2.14) now follows by a simple

of

=]

1]
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9
: argument, and this completes the proof of Claim 4.
3 In applying Claim 4 in what follows, we shall sometimes implicitly take
ZJ := 1, in which case B(ZJ V-n-],J’ Z‘J Vn+],J) = B(V-n-],d’ Vn+1,J)'
]
Claim 5: For each n «IN the following two statements hold:
(1) n(B(W, -n < k < n-1), B(Nn)) <r.
(ii) o(B(w_n), s(wk, -n+1 < k < n)) <P
Proof of Claim 5: Let n « N be arbitrary but fixed.
Proof of Claim 5(i): Define the o-fields Aj and Bj’ j=0,1,2,... as
follows: AO = B(wk, -n+1 < k < n-1) and BO = {Q,¢t. For odd j > 1,
= . . d B. := B(W ..V .). For even j > 2,
AJ ) B(w-nﬂ ,h(J) V'n’J) an J ( ’n+]sh(J) naJ) -
. Ay . . = Bf a0V L),
A B(wn-],h(J) V-n,J) and By = BIW 4 1oy n,g) (Here of course @
denotes the sample space.) Define the o-fields A and B by
A= v A, and B := v B,
j=0 9 j=0 9
For each odd j « N, by (2.10) and (2.12),
= = ‘V . 'w . . .
W_n,j V-n,j (w-n+1,h(j) —n,J) -n+1,h(j), and since (w_n+] h(j) V-n,j) and
H-n+1,h(j) are each A-measurable, w_n,j is A-measurable. Similarly, for each
even j « N, w_n ; is A-measurable. Hence w_n is A-measurable. (Of course
IOV RERED W,.q are also A-measurabie.)
Also, for each j > 1, Bj = B(wn J.) by (2.11); and hence B = B(wn). Hence
NI e, T L T S R

dat

° e
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D(B(N_n, N_n+]9---o wn-])’ B(wn)) E_D(A!B) = StuZp p(AjnBj) = rn-
Here the inequality is trivial, the first equality holds by Claim 4 and Lemma

1, and the second equality holds by Claim 3. This completes the proof of (i).

Proof of Claim 5(ii): This is analogous to the proof of (i), but with a

few changes. One defines the o-fields A. and Bj as follows:

J
Ag 1= (2,0)  and By := B(W_ q5e-es W)
For all j > 1, Aj 1= B(V-n,j) and Bj = B(Vn,j)
Again one defines A :=j§0Aj and B := jzoﬂ.. Then one observes that A :- B(w_n)

and that W, (as well as W , wn_]) is B-measurable. The proof of (ii)

e LD

is then completed in the same way as (i).
Claim 6: For each n ¢ N the following two statements hold:

(1) o(B(W,, k < n-1), B(W,, k

fv

n)) < Ty

(11) p(B(W,, k < -n), BW, k

| v

-nt1)) < v

Proof of Claim 6: Let n ¢ N be arbitrary but fixed.

Proof of Claim 6(i): It suffices to prove that ¥N > n,

p(B(Wk, -N < k < n-1), B(wk, n<k<N))< ry.- We shall show this by induction
on N. By Claim 5, o(B(W,, -n < k < n-1), B(W)) < r . Nowwe only need to
carry out the induction step.

Assume that N > n is such that

o(B(wk, -N - k < n-1), B(wk, n<k<N) - . To prove Claim 6(i) it suffices

ARG
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S
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to show that p(B(W , -N-1 < k < n-1), B(H , n < k < M1}) < r . The proof

will be somewhat similar to that of Claim 5.

[ TR

Define the o-fields Aj and Bj, j=0,1,2,... as follows:

AO := B(W

T

e N <k <n-1) and By := B(W,., n <~ k < N)

For each odd j > 1, Aj i= B(N-N,h(j).v-N-l,j) and

B3 1 BMy,(g) Ve, 5!

Rl 0 8 Bt

Define the o-fields A and B by

8

A := v A, and B :=
j=01J i

il <
(=)

OJ

For each odd j « N, by (2.10) and (2.12}),

W . w-N,h(j), which is a product of two

N-1,3 T Venet,d T Monng) Yanar, g
A-measurable r.v.'s, and hence N_N_] ; is A-measurable. For each even j « N,

w-N—],j = V-N-],j’ which is A-measurable. Hence W_, , is A-measurable.

. - ) . which i
For each odd j « N, by (2.11), wN+]’j N_N,h(j)VN+],J which is

B-measurable. For each even j ¢ N, W » which is a product

N+T.5 - L) N,
of B-measurable functions and is therefore B-measurable. Hence wNH is B-measurable.
Consequently,

O(B(wk’ -N-1 _<_ k i n"])9 B(wk’ n _<_ k : N+])) i O(A,B) = SuPJ:O O(Aj:Bj) :

< max {rn,rN+]} =T
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Here the first inequality is trivial, we are using Claim 4 and Lemma 1 to
obtain the first equality, and then Claim 3 and the induction hypothesis to
obtain the second inequality, and finally (2.1) and (2.2) to obtain the second

equality. This completes the induction step, and Claim 6(i) is proved.

Proof of Claim 6(ii): This is essentially identical to the proof of (i).

One has to change the definition of AO and B to Ao 1= B(wk, -N < k < -n) and

B, := B(wk, -n+1 < k < N).

0

Claim 7: If n « N and K « Z then p(B(Hk, k < K), B(wk, k > k+n)) < Cp

Proof of Claim 7: Let us first consider the case where n is odd, say

n = 2m-1 where m « N. Then either K < -m or K+n > m. If K < -m then

-2K > 2m > n, and

| A

p(B(H s K < K), B(W, k > K+1))

STk Ttk lCy

by Claim 6(ii), (2.2), and (2.1). If instead k+n > m then a similar argument

(using Claim 6(i)) works. The proof for even n is similar to that for odd n. ‘
The rest of the proof of Lemma 2 is now a trivial, cosmetic formality. Let

f: {-1,1} x {-1,1} x {-1,1} x ... » R be a bimeasurable isomorphism. (It is

well known that such an f exists.) Define the sequence (Yk’ k eZ) by

Y, := f(wk) Vk ¢ Z. Properties (i) and (ii) of Lemma 2 now follow immediately ‘

k
from Claims 7 and 2 respectively. This completes the proof of Lemma 2.




3. Proof of Theorem 1

Let ¢ be as in the statement of Theorem 1. Our first step

1° Cps C3se--
is to construct countably many copies of the probability space and random
sequence (Yk, k « Z) from Lemma 2. Then on the product probability space
we obtain an array (Y'((j): ke Z,je ZL) of real-valued random variables with
the following three properties:

(3.1) The sequences (Y‘((j), ke2Z),i=...,-1,0,1,..., are non-degenerate
and are independent of each other, and they have the same distribution on
..xR xR ~ R x ...

(3.2) Foreach j c Z,ne N, Ke Z, p(B(Y'((j), k < K), B(Yé‘]), k>K+n)) < €,

(3.3) Foreach j ¢ Z, K ¢ Z, the r.v. Y.((‘]) is measurable with respect to

n (B(Y(j), k < -n) v B(Y(J), k >n)).
- k = k ~
n=1
tet g: ... x R x R x R x ... » R be a bimeasurable isomorphism. (It is
well known that such a function g exists.) Define the sequence (Xk, k « Z) of

real-valued random variables as follows:

Vko X im gl YDy Ryl )y (3.4)

k

By a simple argument using (3.1), this sequence (Xk) is non-degenerate and
strictly stationary.

For each n ¢ N, by (3.4),

B(Xk, k < -n) v B(Xk, k >n) =

AR VAN ER RN
Je

.
.....

. B N Y A L R
e . PO N . .-
N - E N S LS VR




Hence for each n ¢« N, K ¢ Z, the r.v. X'< is measurable with respect to
B(Xk, k <-n)v B(Xk, k >n), by a simple arqument using (3.3) and (3.4).
Hence the sequence (Xk) is bilaterally deterministic.

For eachn ¢ N,

Q(n) : D(B(xkr k i 0)9 B(xks k : n))

ol v B, ke ), v B, k<)
JeZZ JeZ

SuP;. 7 p(B(YIEj), k > J), B(Y'((j). k < j-n)) < n

by (3.4), (3.1), Lemma 1, and (3.2). This completes the proof of Theorem 1.
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